Near-Optimality of Linear Strategies for Static Teams with 'Big' Non-Gaussian Noise
نویسنده
چکیده
We study stochastic team problems with static information structure where we assume controllers have linear information and quadratic cost but allow the noise to be from a non-Gaussian class. When the noise is Gaussian, it is well known that these problems admit linear optimal controllers. We show that for such linear-quadratic static teams with any logconcave noise, if the length of the noise or data vector becomes large compared to the size of the team and their observations, then linear strategies approach optimality for ‘most’ problems. The quality of the approximation improves as length of the noise vector grows and the class of problems for which the approximation is asymptotically not exact forms a set of measure zero. We show that if the optimal strategies for problems with log-concave noise converge pointwise, they do so to the (linear) optimal strategy for the problem with Gaussian noise. And we derive an asymptotically tight error bound on the difference between the optimal cost for the non-Gaussian problem and the best cost obtained under linear strategies.
منابع مشابه
Numerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملCode design based on metric-spectrum and applications
Code Design Based on Metric-Spectrum and Applications. (December 2004) Panayiotis D. Papadimitriou, B.S., University of Patras, Greece; M.S., University of Patras, Greece Chair of Advisory Committee: Dr. Costas N. Georghiades We introduced nested search methods to design (n, k) block codes for arbitrary channels by optimizing an appropriate metric spectrum in each iteration. For a given k, the ...
متن کاملCRLBs for Pilot-Aided Channel Estimation in OFDM System under Gaussian and Non-Gaussian Mixed Noise
The determination of Cramer-Rao lower bound (CRLB) as an optimality criterion for the problem of channel estimation in wireless communication is a very important issue. Several CRLBs on channel estimation have been derived for Gaussian noise. However, a practical channel is affected by not only Gaussian background noise but also non-Gaussian noise such as impulsive interference. This paper deri...
متن کاملA Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals
In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1603.03160 شماره
صفحات -
تاریخ انتشار 2016